
SRM V2.2 Specification 
Timur Perelmutov, FNAL on behalf of WLCG Data Management Coordination Group 
and Storage Resource Manager Collaboration. 

Wednesday, May 11, 2006 
Draft Version 3 

Abstract 
In order to satisfy the requirements of the LHC Experiments of the Grid Storage 
Interfaces we introduce modifications described bellow to SRM V2.1.1 specification, and 
propose to call the new interface SRM V2.2. 
 
SRM Version 2.2 Specification extends and supersedes the SRM V2.1 and V2.1.1 
specification.  
 
SRM V2.1 style definitions are used in this document. The yellow background highlights 
the new data types and functions and the new members of the existing data structures. 
 

Table of Context  
SRM V2.2 Specification ................................................................................................. 1 

Abstract ...................................................................................................................... 1 
Table of Context ......................................................................................................... 1 
Storage Classes ........................................................................................................... 1 

Motivation .............................................................................................................. 2 
TStorageClass enumeration type ............................................................................. 2 
Description ............................................................................................................. 2 
Alternative Description ........................................................................................... 2 
Usage...................................................................................................................... 2 

TMetaDataSpace  and TMetaDataPathDetail modifications ........................................ 3 
srmChangeStorageClass function................................................................................ 4 

Description ............................................................................................................. 4 
TAccessPattern type for description of the expected TURL utilization........................ 5 

Description ............................................................................................................. 5 
srmPrepareToGet, srmPrepareToPut and srmCopy Modifications............................... 5 
srmReserveSpace Changes.......................................................................................... 6 
srmBringOnline and getOnlineFileStatus functions..................................................... 8 

Resources................................................................................................................ 9 
 

Storage Classes 
      Storage Class will be a property of the file that describes the minimum number of 
copies that should be stored on each type of the media supported by the system. Currently 
we limit the media types to just Disk and Tape.  
 



Motivation 
 Provide the motivation here. 
 

TStorageClass enumeration type 
A new enumeration type TStorageClass will have the following legal values:  
 
 
enum   TStorageClass  { Tape0Disk1,Tape0DiskN, 

  Tape1Disk0,Tape1Disk1, 
  Tape1DiskN,TapeNDisk0, 
  TapeNDisk1,TapeNDiskN} 

Alternatively the TStorageClass will have the following definition 
 
enum   TStorageClass  {Replica, 

 Output, 
 Custodial } 

Description 
Each value in the enumeration is a string that is composed of the word “Tape”, 
followed by the character  “0”, “1” or “N”, followed by the word “Disk” followed 
again by the character “0”, “1” or “N”. The character following the word “Tape” 
or the word “Disk” specifies the minimum number of copies of files stored on 
tape or disk media , “0” means no copies are required, “1” means at least one 
copy is required and “N” means 2 or more copies are required to exist.  

 Alternative Description 
             Replica Storage Class means that the data is stored on the media that has high 
probability of loss, for LHC usage it might be considered to be stored on disk only. 
 Output Storage Class means that the data is much less likely to be lost compared 
with Replica Class , but there is still some chance of it, so the data stored in this Storage 
Class should be reproducible. For LHC usage it can be assumed to be stored on raid array 
type of disks. 
            Custodial Storage Class means that the probability of the data loss is extremely 
low and it is appropriate for the storage of the unique unrecoverable data. This Storage 
Class can be assumed to correspond to taped backed up storage 
 

Usage 
 
The type TStorageClass will be used to describe Storage Class assigned to the 
files in the storage system, at the moments when the files are written into the 
system.  
 
Also the TStorageClass will now be a property of space reservations allocated 
through the Space Management functions of dCache. Once the Storage Class is 



assigned to a Space, the files put in the reserved space will automatically be 
assigned the Storage Class of the Space if TStorageClass type parameter is 
omitted in srmPrepareToPut or srmCopy function invocation.  
 
Information about the storage class assigned to the file will be discoverable 
thought the TMetaDataPathDetail structure returned for each file by the srmLs 
function, which will now have a new parameter called assignedStorageClass. 
 
When a file is only written to storage system, it usually has only one copy on one 
type of media, and then storage system makes additional copies according to the 
Storage Class assigned to the file. While this process takes place, users want to 
know the actual number of copies on each type of media. In order to 
accommodate this desire we introduce a new member of the 
TMetaDataPathDetail structure returned by the srmLs function, namely 
currentStorageClass.  
 
CurrentStorageClass field of TMetaDataPathDetail will always reflect the current 
state of the file, regardless of the assigned Storage Class. If the file is present on 
disk, the  currentStorageClass will be Tape1 Disk1 even if assigned Storage Class 
is Tape1Disk0. 

TMetaDataSpace  and TMetaDataPathDetail modifications 
Therefore the new definition of the TMetaDataSpace and 
TMetaDataPathDetail is as follows: 
typedef struct {TSpaceType    type, 
   TStorageClass                         storageClass, 
   TSpaceToken   spaceToken,  
   Boolean   isValid,  

TUserID   owner, 
   TSizeInBytes     totalSize,   // best effort 

TSizeInBytes   guaranteedSize,  
 TSizeInBytes   unusedSize, 

   TLifeTimeInSeconds  lifetimeAssigned, 
   TLifeTimeInSeconds   lifetimeLeft 

} TMetaDataSpace 
 
typedef  struct {string     path,   // both dir and file 
   TReturnStatus   status,  
   TSizeInBytes    size,    // 0 if dir 
   TOwnerPermission  ownerPermission, 

TUserPermission[]  userPermission, 
TGroupPermission[]  groupPermission, 
TOtherPermission  otherPermission 

   TGMTTime    createdAtTime, 
   TGMTTime   lastModificationTime, 
   TUserID   owner, 



   TFileStorageType  fileStorageType, 
   TFileType   type,  // Directory or File  
   TStorageClass                         assignedStorageClass, 
   TStorageClass                         currentStorageClass, 

TLifeTimeInSeconds  lifetimeAssigned, 
   TLifeTimeInSeconds   lifetimeLeft, 
   TCheckSumType  checkSumType, 
   TCheckSumValue  checkSumValue, 

TSURL   originalSURL,   // if path is a file 
TMetaDataPathDetail[]        subPath              // optional recursive 

} TMetaDataPathDetail 
 
 

 

srmChangeStorageClass function 
LCG Experiments expressed the desire to be able to change the storage class of the 
existing data in the storage system. In order to do so we introduce a new function 
srmChangeStorageClass. 
 
The function will have the following input and output parameters. 
 
srmChangeStorageClass 
 In:  TUserID              authorizationID, 

TChangeStorageType [] arrayOfChangeRequest,  
 

 Out: TReturnStatus   returnStatus,  
TSURLReturnStatus[] arrayOfFileStatus 

   
Where TChangeStorageType is defined as 
 

typedef  struct { 
TSURLInfo    surlInfo, 
TStorageClass     storageClass 

} TChangeStorageType 
 

Description 
srmChangeStorageClass will take an array of file path structures describing the files 
that client wants to assign a new Storage Class . The assignedStorageClass parameter 
describes what is the desired Storage Class. The function will return a returnStatus, 
telling if the execution took place and if there were some conditions preventing the 
execution such as lack of authorization, etc. The arrayOfFileStatus returned to the client 
will describe the success of the request (or lack of it) for each individual file in the 
request. 
 



TAccessPattern type for description of the expected TURL 
utilization  
In order to better accommodate the transfer request initiated by srmPrepareToGet and 
srmPrepareToPut the following new data types are introduced: 
 
enum  TTransferPattern { “TransferLimited”, 

 “ApplicationLimited” } 
 

 
enum  TConnectionType { “WAN”, 

  “LAN” } 
 
<!-- Timur: The earlier proposed terms “Sequential” and “Random” did not reflect the 
qualities of the transfer we were interested in. “Random” access transfer still can go at a 
very high transfer rate and “Sequential” one can be very slow. So the new terms are 
offered, and if collaboration can propose a better terminology, it will be gladly accepted. 
--> 

Description 
TTransferPattern type TConnectionType parameters will be passed as inputs to the 
srmPrepareToGet or srmPrepareToPut function. It will indicate how the transfer URL 
produced by srm is going to be used. If the parameter value is “ApplicationLimited”, the 
system might expect that application will perform some processing of the partially read 
data, followed by more partial reads and a frequent use of the protocol specific “seek” 
operation. If the value is “TansferLimited” the file will be read at the highest speed 
allowed by the connection between server and a client. TConnectionType will indicate if 
the client is connected though a local or wide area network. The srm will then have a 
chance to optimize the transfer parameters to achieve maximim thoughput for the 
configuration. 
 
<!-- Timur : There were other parameters discussed , like access speed, file system 
parametes tcp/ip transfer protocol properties, but I did not find these as useful, and I do 
not remember that there was a consensus about what to include--> 

srmPrepareToGet, srmPrepareToPut and srmCopy Modifications 
In order to allow the specification of the StorageClass of the files transferred into the 
system and allow to specify the access patters for the transfers between the Storage 
System and the client srmPrepareToGet, srmPrepareToPut and srmCopy  input 
arguments need to be changed. While the signatures of the data transfer functions 
srmPrepareToGet, srmPrepareToPut and srmCopy remain the same, the following data 
types used as types of input parameters for the functions mentioned here are changed and 
now look as following: 
 
typedef struct {TSURLInfo   fromSURLInfo,  
   TLifeTimeInSeconds  lifetime, // pin time 

TFileStorageType  fileStorageType, 



TSpaceToken   spaceToken,  
TDirOption   dirOption , 
TTransferPattern                     transferPattern, 
TConnectionType                  connectionType 

} TGetFileRequest 
 
typedef struct {TSURLInfo   toSURLInfo, // local to SRM  
   TLifeTimeInSeconds  lifetime,          // pin time 
   TFileStorageType  fileStorageType,  

TSpaceToken   spaceToken,  
    TSizeInBytes     knownSizeOfThisFile, 

TTransferPattern                     transferPattern, 
TConnectionType                  connectionType, 
TStorageClass                         storageClass 

} TPutFileRequest  
 
typedef struct {TSURLInfo   fromSURLInfo, 
   TSURLInfo   toSURLInfo,  
   TLifeTimeInSeconds  lifetime, // pin time 
   TFileStorageType  fileStorageType, 
   TSpaceToken   spaceToken,  

TOverwriteMode    overwriteMode, 
TDirOption   dirOption, 
TTransferPattern                     transferPattern, 
TConnectionType                  connectionType, 
TStorageClass                         storageClass 

} TCopyFileRequest 
 

srmReserveSpace Changes 
It is expected that in a distributed Mass Storage System space reservation operation will 
take a significant amount of time to complete. We feel that making the srmReserveSpace 
operation asynchronous we will make the servers capable of supporting larger number of 
concurrent clients and make clients capable of submitting multiple reservation requests 
and starting a transfer into the successful ones without using multiple threads and 
multiple connections to the server.  
 
To support asynchronous execution of the srmReserveSpace function we add the 
following definition of  TReserveSpaceRequest type: 
 
 
typedef struct {TSpaceType   typeOfReservedSpace,  

TSizeInBytes   sizeOfTotalReservedSpace, // best 
effort  

TSizeInBytes   sizeOfGuaranteedReservedSpace, 
TLifeTimeInSeconds  lifetimeOfReservedSpace,    



TSpaceToken,   referenceHandleOfReservedSpace, 
TStorageClass                         defaultStorageClass, 
TReturnStatus   status 

} TReserveSpaceRequestStatus 
 
In order to allow the asynchronous invocation and the specification of the default 
StorageClass for the files that will be transferred into the reserved the srmReserveSpace 
will now be defined as follows: 
 
 
srmReserveSpace 
 In:  TUserID   authorizationID, 

TSpaceType   typeOfSpace,  
String    userSpaceTokenDescription, 
TSizeInBytes   sizeOfTotalSpaceDesired,  
TSizeInBytes   sizeOfGuaranteedSpaceDesired, 
TLifeTimeInSeconds  lifetimeOfSpaceToReserve, 
TStorageSystemInfo  storageSystemInfo 
TStorageClass                         storageClass 

 
Out: TReserveSpaceRequestStatus  reserveSpaceStatus, 
            TRequestToken             reserveSpaceRequestToken, 

TLifeTimeInSeconds  expectedTimeToCompletion, 
TReturnStatus   returnStatus 
 

We also add the following new function: 
 

srmStatusOfReserveSpaceRequest 
 In: TRequestToken   reserveSpaceRequestToken, 
  TUserID    authorizationID 
 
 Out: TReturnStatus    returnStatus,  

TLifeTimeInSeconds   expectedTimeToCompletion, 
TReserveSpaceRequestStatus  reserveSpaceStatus 

 
The execution of the srmReserveSpace can now proceed in two different ways: 
1. Synchronous execution – space is available immediately, the srmReserveSpace 
returns SRM_SPACE_AVAILABLE as returnStatus  and fills in the values of the 
reserveSpaceStatus structure.  
2. Asyncronous execution – if it will take long time to execute the request, the 
srmReserveSpace returns SRM_REQUEST_QUEUED or SRM_REQUEST_INPROGRESS 
as a value of returnStatus and gives a client a valid reserveSpaceRequestToken. The 
token than can be utilized in srmStatusOfReserveSpaceRequest to get the current status 
of the reserve space request. Once request is completed, the 
srmStatusOfReserveSpaceRequest will returns SRM_SPACE_AVAILABLE as 
returnStatus  and fills in the values of the reserveSpaceStatus structure. 



 
At any point srmReserveSpace and srmStatusOfReserveSpaceRequest can return one 
of the errors as the values of the returnStatus. At this point the execution of request is 
completed (failed) and further executions of srmStatusOfReserveSpaceRequest with 
the same token will return exactly the same returnStatus. 
 
srmAbortRequest abort request can be used to terminate the reserve space request 
prematurely.  
 
  
 

srmBringOnline and getOnlineFileStatus functions 
In order to satisfy the desire of experiments to be able to make certain data readily 
available for future transfers, without burdening the system with calculation of the 
Transfer URLs and other operations associated with srmPrepareToGet function, we 
introduce the new data type TOnlineStateClaim and a new function srmBringOnline, 
which in hieratical mass storage system is expected to stage date to the top of hierarchy 
(this operations is also known as “Staging”) and making sure that the data stays there for 
a certain period of time (which is also known as “Pinning”). The execution of the 
function results in the “Bring Online File Status” created on the server, which has its own 
lifetime. The file is expected to remain online for as long as there are active “Bring 
Online File Status”.  
 
typedef  struct {TSURL   SURLInfo, 

TLifeTimeInSeconds  remainingTimeInOnlineState, 
TReturnStatus   status 

} TBringOnlineFileStatus 
 
 
srmBringOnline 
 In:  TUserID   authorizationID, 

string[]    arrayOfTransferProtocols, 
TSURLInfo[]   arrayOfFilePaths,  
TLifeTimeInSeconds  lifetimeOfOnlineState,  
TTransferPattern                     transferPattern, 
TConnectionType                 connectionType, 
TSpaceToken   spaceToken, 
 

  
Out: TReturnStatus   returnStatus,  

TRequestToken  requestToken, 
TBringOnlineFileStatus [] arrayOfFileStatus 

 
If the lifetimeOfOnlineState is not specified, the system wide or VO wide defaults should 
be used.  The requestToken can be used to terminate the claim(s) on file(s)’s online state 



prematurely by the AbortRequest, AbortFiles. Lifetime of the claim can be 
extended using    ExtendFileLifeTime function. 

 
The user has ability to discover the remaining lifetime of the online state claims on basis 
of the list of the online state claim token and optrionaly the names of the files using the 
getOnlineFileStatus. 
 
getOnlineFileStatus 

In:  TUserID              authorizationID, 
TRequestToken   requestToken, 
TSURLInfo[]   arrayOfFilePaths, 

 
Out: TReturnStatus   returnStatus, 

TBringOnlineFileStatus [] arrayOfFileStatus 
 

Resources 
[1] The Storage Resource Manager Interface Specification, Version 2.1.1, Junmin Gu, 
Alex Sim, Arie Shoshani and SRM Collaboration. 
[2] SRM Storage and File Types V4, James Casey, Jean-Philippe Baud and WLCG Data 
Management Coordination Group 
[3] Documents and notes from LCG Computing Service / Service Challenge 4 Workshop  


